84 research outputs found

    Collapses and revivals of stored orbital angular momentum of light in a cold atomic ensemble

    Full text link
    We report on the storage of orbital angular momentum of light in a cold ensemble of cesium atoms. We employ Bragg diffraction to retrieve the stored optical information impressed into the atomic coherence by the incident light fields. The stored information can be manipulated by an applied magnetic field and we were able to observe collapses and revivals due to the rotation of the stored atomic Zeeman coherence for times longer than 15 ÎĽs\mu s.Comment: Submitted to Physical Review

    Dynamics of a stored Zeeman coherence grating in an external magnetic field

    Full text link
    We investigate the evolution of a Zeeman coherence grating induced in a cold atomic cesium sample in the presence of an external magnetic field. The gratings are created in a three-beam light storage configuration using two quasi-collinear writing laser pulses and reading with a counterpropagating pulse after a variable time delay. The phase conjugated pulse arising from the atomic sample is monitored. Collapses and revivals of the retrieved pulse are observed for different polarizations of the laser beams and for different directions of the applied magnetic field. While magnetic field inhomogeneities are responsible for the decay of the coherent atomic response, a five-fold increase in the coherence decay time, with respect to no applied magnetic field, is obtained for an appropriate choice of the direction of the applied magnetic field. A simplified theoretical model illustrates the role of the magnetic field mean and its inhomogeneity on the collective atomic response.Comment: To appear in J. Phys.

    Temporal Dynamics of Photon Pairs Generated by an Atomic Ensemble

    Get PDF
    The time dependence of nonclassical correlations is investigated for two fields (1,2) generated by an ensemble of cold Cesium atoms via the protocol of Duan et al. [Nature Vol. 414, p. 413 (2001)]. The correlation function R(t1,t2) for the ratio of cross to auto-correlations for the (1,2) fields at times (t1,t2) is found to have a maximum value Rmax=292(+-)57, which significantly violates the Cauchy-Schwarz inequality R<=1 for classical fields. Decoherence of quantum correlations is observed over 175 ns, and is described by our model, as is a new scheme to mitigate this effect.Comment: 5 pages, 5 figure

    Narrow band amplification of light carrying orbital angular momentum

    Full text link
    We report on the amplification of an optical vortex beam carrying orbital angular momentum via induced narrow Raman gain in an ensemble of cold cesium atoms. A 20\% single-pass Raman gain of a weak vortex signal field is observed with a spectral width of order of 1 MHz, much smaller than the natural width, demonstrating that the amplification process preserves the phase structure of the vortex beam. The gain is observed in the degenerated two-level system associated with the hyperfine transition 6S1/2(F=3)↔6P3/2(F′=2)6S_{1/2}(F=3)\leftrightarrow 6P_{3/2}(F^{\prime}=2) of cesium. Our experimental observations are explained with a simple theoretical model based on a three-level Λ\Lambda system interacting coherently with the weak Laguerre-Gauss field and a strong coupling field, including an incoherent pumping rate between the two degenerate ground-states.Comment: 9 pages, 4 figure

    Fault-tolerant quantum repeater with atomic ensembles and linear optics

    Full text link
    We present a detailed analysis of a new robust quantum repeater architecture building on the original DLCZ protocol [L.M. Duan \textit{et al.}, Nature (London) \textbf{414}, 413 (2001)]. The new architecture is based on two-photon Hong-Ou-Mandel-type interference which relaxes the long-distance interferometric stability requirements by about 7 orders of magnitude, from sub-wavelength for the single photon interference required by DLCZ to the coherence length of the photons, thereby removing the weakest point in the DLCZ schema. Our proposal provides an exciting possibility for robust and realistic long-distance quantum communication.Comment: Comments are welcome, to appear in Phys. Rev. A, accepted versio

    Dynamics of saturated Bragg diffraction in a stored light grating in cold atoms

    Full text link
    We report on a detailed investigation of the dynamics and the saturation of a light grating stored in a sample of cold cesium atoms. We employ Bragg diffraction to retrieve the stored optical information impressed into the atomic coherence by the incident light fields. The diffracted efficiency is studied as a function of the intensities of both writing and reading laser beams. A theoretical model is developed to predict the temporal pulse shape of the retrieved signal and compares reasonably well with the observed results.Comment: Submitted to Phys. Rev.

    Off-axis retrieval of orbital angular momentum of light stored in cold atoms

    Full text link
    We report on the storage of orbital angu- lar momentum (OAM) of light of a Laguerre-Gaussian mode in an ensemble of cold cesium atoms and its re- trieval along an axis different from the incident light beam. We employed a time-delayed four-wave mixing configuration to demonstrate that at small angle (2o), after storage, the retrieved beam carries the same OAM as the one encoded in the input beam. A calculation based on mode decomposition of the retrieved beam over the Laguerre-Gaussian basis is in agreement with the experimental observations done at small angle values. However, the calculation shows that the OAM retrieving would get lost at larger angles, reducing the fidelity of such storing-retrieving process. In addition, we have also observed that by applying an external magnetic field to the atomic ensemble the retrieved OAM presents Larmor oscillations, demonstrating the possibility of its manipulation and off-axis retrieval.Comment: 9 pages, 4 figure

    Control of decoherence in the generation of photon pairs from atomic ensembles

    Full text link
    We report an investigation to establish the physical mechanisms responsible for decoherence in the generation of photon pairs from atomic ensembles, via the protocol of Duan et. al for long distance quantum communication [Nature (London) 414, 413 (2001)] and present the experimental techniques necessary to properly control the process. We develop a theory to model in detail the decoherence process in experiments with magneto-optical traps. The inhomogeneous broadening of the ground state by the trap magnetic field is identified as the principal mechanism for decoherence. In conjunction with our theoretical analysis, we report a series of measurements to characterize and control the coherence time in our experimental setup. We use copropagating stimulated Raman spectroscopy to access directly the ground state energy distribution of the ensemble. These spectroscopic measurements allow us to switch off the trap magnetic field in a controlled way, optimizing the repetition rate for single-photon measurements. With the magnetic field off, we then measure nonclassical correlations for pairs of photons generated by the ensemble as a function of the storage time of the single collective atomic excitation. We report coherence times longer than 10 microseconds, corresponding to an increase of two orders of magnitude compared to previous results in cold ensembles. The coherence time is now two orders of magnitude longer than the duration of the excitation pulses. The comparison between these experimental results and the theory shows good agreement. Finally, we employ our theory to devise ways to improve the experiment by optical pumping to specific initial states.Comment: 16 pages, 11 figures, submitted for publicatio
    • …
    corecore